\(\int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [3]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 104 \[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{d}+\frac {2 B \sqrt {b \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

-2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2
)/(b*sec(d*x+c))^(1/2)+2*B*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3872, 3856, 2720, 3853, 2719} \[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{d}+\frac {2 B \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[In]

Int[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(-2*b*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Ellip
ticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/d + (2*B*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = A \int \sqrt {b \sec (c+d x)} \, dx+\frac {B \int (b \sec (c+d x))^{3/2} \, dx}{b} \\ & = \frac {2 B \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-(b B) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx+\left (A \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{d}+\frac {2 B \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}-\frac {(b B) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \\ & = -\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{d}+\frac {2 B \sqrt {b \sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.70 \[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {b \sec (c+d x)} \left (-B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+B \sin (c+d x)\right )}{d} \]

[In]

Integrate[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[b*Sec[c + d*x]]*(-(B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + A*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2] + B*Sin[c + d*x]))/d

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 20.63 (sec) , antiderivative size = 470, normalized size of antiderivative = 4.52

method result size
parts \(-\frac {2 i A \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}{d}+\frac {2 B \left (i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}-i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+2 i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-2 i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+\sin \left (d x +c \right )\right ) \sqrt {b \sec \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )+1\right )}\) \(470\)
default \(-\frac {2 \left (i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )^{2}-i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )^{2}+i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )^{2}+2 i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )-2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-B \sin \left (d x +c \right )\right ) \sqrt {b \sec \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )+1\right )}\) \(582\)

[In]

int((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2*I*A/d*(cos(d*x+c)+1)*(b*sec(d*x+c))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*B/d*(I*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2-I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+2*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*cos(d*x+c)-2*I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c
)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*E
llipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)+sin(d*x+c))*(b*sec(d*x+c))^(1/2)/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.35 \[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {-i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, B \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d} \]

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*A*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*A*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*B*sqrt(b/cos(d*x + c))*sin(d*x + c))/d

Sympy [F]

\[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \sqrt {b \sec {\left (c + d x \right )}} \left (A + B \sec {\left (c + d x \right )}\right )\, dx \]

[In]

integrate((b*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)),x)

[Out]

Integral(sqrt(b*sec(c + d*x))*(A + B*sec(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right )} \,d x } \]

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

Giac [F]

\[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right )} \,d x } \]

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B/cos(c + d*x))*(b/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x))*(b/cos(c + d*x))^(1/2), x)